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Introduction

For the past two years we have been using an analytic
approximation to the atomic scattering factor suggested
by Steinfink (1957),*

Jo(x) =exp (X xnz") , (1)

where f, is the temperature-uncorrected atomic scattering
factor and x =sin 6/4. This may be written as

log, fo(z) = X apa™, (2)

L.e., & polynomial of the nth degree in z. This function
has been found to have the following important advan-
tages:

(@) The evaluation of the best parameters is simple
and straightforward because of their linear form in
equation (2).

(0) Unlike some other analytic approximations (Vand,
Eiland & Pepinsky, 1957; Freeman & Smith, 1958),
function (1) is not restricted to the Cu Ko scattering
range but reproduces the scattering curves tested with
good accuracy over the entire Mo Ko range.

(c) The effect of thermal motion on f, can be simply
introduced by subtraction of the appropriate temperature
factor B from ,, the coefficient of x2.

d) ItAWill beAshown that the unitary atomic scattering

factors f, and f, and the quantity 3 f8; can be conveni-

j
ently approximated with an expression of the form of
equation (1).

Function (1) was tested on eleven atoms and ions.
Two essentially different types of parameters, designated
as least-squares parameters and unique polynomial co-
efficients, were determined in each case.

Least-squares parameters

To cover the entire scattering range, a sixth-degree
polynomial was used as an exponent in (1). &, was deter-
mined by the condition that exp xy=f,(0) =N where N
is the number of electrons in the atom or ion. The re-
maining parameters were determined by the usual least-
squares technique minimizing the expression

%‘ (loge f; —loge fy)*

where the f,’s are the calculated values and the f,’s are
the tabulated values fitted. A standard deviation, o,
given by

m 3
o= [_zl (4, %/m} ,

* To our knowledge, Dr Hugo Steinfink of the Shell De-
velopment Company, Houston, Texas, first used equation (1)
to obtain a least-squares fit of certain atomic scattering fac-
tors, His degree of fit is somewhat less than ours as he em-
ployed & smaller number of parameters.

was used as a criterion of fit. The normal equations were
solved by Crout’s (1941) procedure, including an iterative
process to reduce the effect of round-off error. One set
of parameters was derived for a scattering range suf-
ficient to include Cu K« radiation and a different set to
include the larger Mo K« range. These parameters are
collected in Table 1 with ¢, ¢/N and the mean relative
error

7 =,§ Afo lfole)m -

Occasionally, the Mo Ko parameters fitted the Cu K«
range as well as the parameters directly derived for the
smaller range. In such cases, only the former values are
listed.

Coefficients of unique polynomials

Each scattering curve was divided into successive angular
ranges containing six tabulated points. Each such range
was then precisely fitted by a unique fifth-degree poly-
nomial in equation (1) containing, in general, six in-
dependent constants. An overlap of adjacent ranges,
usually by one point, was taken to ensure continuity in
the values. The amount of overlap was sometimes varied
to obtain the best possible fit. These coefficients and
their range of applicability are presented in Table 2.

Accuracy of representation

The data in Table 1 shows that a sixth-degree polynomial
is sufficient to give a good least-squares fit of f, over a
wide range of sin 6/A. The somewhat larger deviations
observed for C in the Mo K« range and Cl1~ in both ranges
indicate that occasionally a polynomial exponent of
higher degree is required to obtain an equivalent degree
of accuracy throughout. Raising the degree of the ex-
ponent, however, would not greatly increase the compu-
tations necessary. The heavier atoms and ions fitted,
which scatter significantly to large values of sin 0/4, are
particularly well represented throughout the entire Mo K«
range. This is illustrated in Table 3 for the typical case
of Zn. Here we have compared our calculated values of
Jfo for the Mo K« range with the tabulated values and
with the values calculated with the analytic approxima-
tion of Forsyth & Wells (1959). The relative errors are
also listed.

The unique fifth-degree polynomial coefficients in
Table 2 reproduce the tabulated f, values in the ap-
propriate interval without error. An estimation of the
error due to polynomial interpolation (Milne, 1949, pp.
78 ff. and p. 128) with a fifth-degree polynomial in
equation (2) showed that in general it was insufficient
to influence the last significant figure of f,. Therefore,
the interpolated values derived from these coefficients
are as accurate as the tabulated ones from which they
are obtained.
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Table 2. Coefficients of unique fifth-degree polynomials
Range of
N sin 6/ Go e Gy Oy &4 &
C 6 0-00 -0-25 1.79176 0-101999 —19-7406 33-4898 —12-0397 40-8497
0-25 —0-60 2-43441 — 6:97155 6-28525 1-36236 — 0-596875 — 378245
0-50 -1-00 1-81768 — 4-51004 4-25111 0-984194 — 4-38583 1-93450
0-80 -1-30 0-422278 0-926590 — 1-98854 0-693644 0-172529 — 0-135592
N 7 0-00 —0-25 1-94591 — 00339148 —11-8993 — 7-68009 106-042 —141-637
0-25 ~0-60 2-11402 — 2:00200 — 544384 — 0-991157 30-4335 —27-6963
0-50 -1-00 3-37380 —11-1501 15-6765 — 8-55028 — 0-381498 1-26506
0-80 -1:30 4-32485  —13-1371 15-2879 — 562264 — 1-83560 1-21663
o 8 0-00 —0-25 2-07944 — 00326747 — 9-54497 — 612299 73-8164 — 98-1579
0-25 —0-60 1-77179 4-46131 —36-5769 80-5341 —82:1795 33-9371
0-60 -1-10 1-87171 0-522783 —13-9071 25-5511 —18-6376 4-91698
0-80 -1-30 1-82436 — 317296 2:31004 — 0-432614 — 0-308553 0-0976961
Cl 17 0:000-0-398  2-83321 0-549344 —33-2288 150-824 —303-166 239-135
0-398-0-796  2-93948 — 3-09420 — 0-0397026 12-7681 —21-0753 10-0290
0-637-1-035  1-96230 0-755137 — 0-848583 — 2-41316 2:-65479 — 0-749357
0-955-1-353 245578 — 1:56126 1-44170 — 0-928000 — 0-376154 0-330000
CI- 18 0-00 -0-25 2-89037 0-0710735 —18-6737 41-1345 12-8878 —77-9083
0-25 —0-60 3:90706 —13-3958 48-0850 —103-586 120-222 —57-8612 -
0-60 -1-10 201219 1-79054 — 6-68367 8-55823 — 5-94969 1-66116
0-80 -1-30 0-508276 6-14430 — 8-41507 2:77732 0-902006 ~ 0-528622
Nit++ 26 0-00 -0-25 3-25810 — 0-0114928 — 479774 — 7-30335 54-6459 —173-2742
0-15 —0-40 3-18731 1-39426 —15-7536 36-0479 —37-3237 14-8284
0-40 —0-65 3-51889 — 160293 — 5:57054 20-0190 —25-8102 11-8103
0-65 —0-90 8:60059 —25-7104 36-2103 —12-4196 —13:6603 9-:01214
0-90 -1-15 2-81265 — 0-142995 — 117437 0-500927 — 0-00319618 0-00167374
105 -1:30 2-97851 — 0-959403 — 0-0419709 - 0-0503121 0-0817473 — 0-0158425
Ni 28 0-000-0-398  3-33220 — 2:02062 12-1975 —75-1835 173-529 —140-092
0-080-0-477  3-30679 — 1-29136 4-67279 —39-4646 94-3251 —73-7433
0-477-0-875  3-29540 — 1-24967 — 1:59415 2-27665 — 1-16501 0-386152
0-637-1-035  3-34328 — 175275 0-810396 — 325668 4-75395 - 1-97800
0-955-1:353  3-56349 — 246473 0-842948 — 0-246000 0-401538 — 0-180000
Zntt 28 0-00 —0-25 3-33220 — 0-0206554 — 4-60561 — 898146 63-0479 ~—87-0613
0-15 —0-40 3-35941 — 0-638290 0-462568 —26-1220 78-7263 —69-5593
0-40 —0-65 3:61756 — 2-16161 — 2-33088 12-4931 —17-9821 8-80769
0-65 —0-90 5-85560 —12-5933 16-0408 — 4-32147 — 7-29550 4-41724
0-90 -1-15 2-72899 — 0-0387937 — 0-0709542 — 1-78563 170471 — 0-452657
1:05 -1-30 2:78551 0-0552122 — 1-35414 0:641632 — 0-00172315 — 0-0423486
Zn 30 0-00 —0-25 340120 0-0652945 —12-9794 48-3093 —75-2046 18-9993
0-25 —0-60 3-12976 290664 —21-8083 51-4738 —61-8348 30-1463
0-60 -1-10 3-62067 — 1:74586 — 1-08681 1-35317 0-173972 — 0-324481
0-80 -1-30 4-00097 — 310113 0-223664 1-76793 — 1-06385 0-163008
Pd++ 44 0-00 -0-25 3-78419 — 0-00644965 — 4-76157 — 507402 48:2748 —63-5344
0-05 —0-30 3:78249 0-0710579 — 6-03485 4-54928 14-2997 —18-2214
0-30 -0-55 3:64577 2:32352 —20-9927 53-7339 —64-3927 29-7685
0-50 -0-75 4-08478 — 2-17895 — 1:07425 7-98901 —11-3799 5-36558
0-75 ~1-00 4-23886 — 3-58108 530146 — 6-66943 4-71156 — 1-36086
1-00 -1-25 8:24827 —15-6709 16-2633 — 6-40000 — 0-400000 0-600000
1-05 -1-30 3-34820 — 0-167578 — 0-820505 0-122628 0-245570 — 0-0884747
Pd 46 0-00 —0-25 3-82864 0-0130814 — 890087 522805 92-9772 —196-981
0-05 -0-30 3-82028 0-394756 —15-1631 52-4921 —173-6597 24-9806
0-30 —0-55  3-75149 0-164662 — 6-74574 11-8152 — 7-08880 0-00534866
0-50 -0-75 3-63859 0-208409 — 4-31697 5-24461 — 224948 0-0919988
0-75 -1-30 Use same coefficients given for Pd++ above to cover these ranges

calculation of another quantity, the unitary atomic

Suggested applications scattering factor, which has widespread application.

Patterson (1935) suggested that the unitary atomic
scattering factor, f,, for a given structure be calculated
from the expression

Initial stages of structure determination

In addition to the analytic approximation of the atomic
scattering factor, equation (1) is well suited to the ready
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Table 3. Tabulated and calculated values of f, for zinc (0 < sin /4 < 1-30)

Forsyth & Wells

Least-squares fit

(1959) with equation (1)
sin 6/2 Jo (tab.) Jo (cale.) 14£5lfol % Jo (cale.) 14folfol %

0-00 30-00 29-78 0-73 30-00 0-00
0-05 29-30 29-26 0-14 29-11 0-65
0-10 27-63 27-84 0-76 27-63 0-:00
0-15 25-67 25-87 0-78 25-81 0-55
0-20 23-74 23-75 0-04 23-86 0-51
0-25 21-88 21-74 0-64 21-92 0-18
0-30 20-11 19-94 0-85 20:06 0-25
0-35 18-41 18:34 0-38 18:33 0-43
0-40 16-83 16-89 0-36 16-74 0-53
0-45 15-38% 15-54 1-04 15-32 0-39
0-50 14-05 14-26 1-49 14-04 0-07
0:55 12-86% 13-08 1-71 12:90 0:31
0-60 11-84 11-98 1-18 11-89 0-42
0-65 10-93* 11-00 0-64 10-99 0-55
0-70 10-15 10-13 0-20 10-21 0-59
075 9-48% 9-37 116 9-52 0-42
0-80 8:90 873 1-91 8-92 0-22
0-85 8-41* 8-20 2:50 8-40 0-12
0-90 7-99 777 2:75 7-96 0-38
0-95 7-63% 7-42 2-75 7-59 0-52
1-00 7-32 7-15 2:32 7-28 0:55
1-10 6:81 6-78 0-44 6-81 0-00
1-20 6-40 657 2-66 644 0-63
1-30 6-04 6-46 6:95 6:02 0-33

¢ 0-18 0-07

o|N (%) 0-59 0-23

7 (%) 1-43 0-36

* These tabulated f, entries are interpolated values calculated with the unique polynomial coefficients of Table 2.

“ P P
fONZij/zNj’ (3)
j=1 ji=1

the summation, as usual, being over the contents of the
unit cell. As this is only an approximation, an equally
valid representation is given by the geometric mean

1/P

~ P \1/PJ// P 1/P P
Jo ~ <.Hf0j> /(HN7) = {H (fo,')/Ni] . (4)
j=1 j=1 j=1

Equation (4) differs but slightly from (3) for structures
containing atoms of about the same atomic number, and
it is just in such cases that the approximate concept of
the unitary atomic scattering factor best applies. Now,
equation (1) can be written as

JojlNj = exp (kgl o‘ikxk> (8)

where the sub-index j has been added to designate the
atomic species. Substituting equation (5) into (4) yields

A P n n
Jo ~ exp [(1/P) 2; kzlocfkw"] = exp (kZ ﬂkﬂc"> (6)
j=1 k=

where

P
Br = (1/P) X s po=0. (7
(k+0) j=1

Thus, fy, can be simply and rapidly calculated using
equation (6), an expression of the same form as (1).
The fi’s, the new least-squares parameters, are derived
by taking the arithmetic mean of the corresponding least-

squares parameters of the contents of the wunit cell.

J» which includes temperature motion, can also be directly
calculated using equation (6) if the «j;,’s are first modified
by subtraction of the natural temperature factors,
the Bj’s. Further, the quantity

P
i=1

useful in statistical work, can be calculated with sufficient
accuracy when the atoms in the structure do not differ
greatly in atomic number by a slight modification in the

above procedure. With the usual assumption, Joj ~ ﬁ,N,v,
we obtain

P A2 P P n
2~ fo XN~ <2N12> exp<22ﬁkmk) (8)
j=1 i=1 j=1 =1

We therefore have a very convenient and simple com-
putational method for sharpening Patterson and Fourier
syntheses, calculating unitary structure factors for use
in inequalities, and determining absolute scaling con-
stants and natural temperature factors by Wilson’s (1942)
statistical method.

Structure refinement

The very accurate interpolated f, values obtained from
the unique polynomial coefficients of Table 2 may be
used for structure factor calculation in the final stages of
structure refinement. We have computed tables of f,
values with these coefficients for the Cu K« radiation
range at intervals of 0-001 in sin2 6(0-000 —1-000). In
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computation, it is convenient to introduce the wavelength
by the use of modified coefficients, oz, where oy = xy/A*
so that the independent variable becomes sin 6.

Our tables also include f,, values corrected for dispersion
with the data of Dauben & Templeton (1955).

The authors are greatly indebted to the Robert A.
Welech Foundation of Houston, Texas, for support of
this project.
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Numerical Calculus. Princeton:

. By Jon GionNESs, Central Institute for Industrial Resarch,

(Recetved 28 August 1959)

During an investigation by the present author on multiple
scattering effects in electron diffraction, several diffracto-
grams were taken of evaporated carbon films in the
thickness range 100-600 A. It is the purpose of this
note to discuss the radial distribution curves which were
obtained from these diffractograms after performing
correction for multiple scattering as described in a recent
paper (Gjennes, 1959). The diffractograms consisted of
a series of diffuse halos with no signs of the graphite
crystallites occasionally observed by Cosslett & Cosslett
(1959) from similar specimens. Apart from multiple
scattering effects no variations with film thickness were
observed in the diffractograms. The s(47 sin 6/4) values
for the halos were found to correspond closely to those
reported by Kakinoki et al. (1957).

The atomic radial distribution curve shown in Fig. 1
was calculated from intensity data in the region s=
1-20 A-1, Normalization and subtraction of back-ground
was carried out according to the procedure extensively
used by Almenningen et al. (1955) in gas investigations.

Table 1. Observed and calculated interatomic distances

Observed Graphite layer Three-dimensional network

No. of No. of Aver- No. of

r(A) atoms r(A) atoms r(A) age atoms
1-40 2
1-45 29 (1-45) 3 { 1-52 1-44 1
2-42 2
2:49 7 2-51 6 { 2.53 2-49 4
2-80 1
31 7 2-90 3 { 2-92 3-09 2
3-24 4
o e 358 ) 2
3-74 12-14 3-84 6 { 3.82 3-77 8
4-32 10
4-52 4-35 6 = 4-55 6
4-75 7
502 6 5-00 5
495 { 522 6 517 14

As the intensity at small angles was neglected, the cal-
culated radial distribution corresponds to the deviations
from the even distribution (see e.g. Klug & Alexander,
1954). To obtain the total atomic distribution function
one must therefore read the ordinate above the straight
line in Fig. 1 corresponding to minus the normalized even
distribution. The r-values of the peaks in the o/r-curve
are tabulated in the first column of Table 1 together
with the peak areas found by decomposition and integra-
tion of o(r). The values in the next two columns are
calculated for a single graphite layer with bond length
equal to the observed nearest neighbor distance, viz.
1-45 A. By comparison it is at once seen that the observed
interatomic distances do not fit well with a planar hex-
agonal layer, and it is further noticed that the observed
nearest neighbor distance is appreciably greater than that
found in graphite (1-42 A).

Attempts to account for those discrepancies by in-
troducing variations in bond angle and deviations from
planarity indicate the latter to be considerable. It thus
seems reasonable to seek an interpretation of the ex-
perimental radial distribution by a three-dimensional
network like those previously suggested by Gilson et al.
(1946) or Kakinoki et al. (1957). The distances and
weights tabulated in the last two columns of Table 1
correspond to the model proposed by Gilson et al. (1946).
This structure consists essentially of a mixture of 6-rings
and staggered 8-rings, the atomic arrangement around
each 8-ring being similar to that found for tetraphenylene
by Karle & Brockway (1944). The C-C bonds within
and between the 6-rings were taken to be 1-40 and
1-52 A respectively and all C~-C~C angles were set equal
to 120° in close agreement with the reported values for
tetraphenylene.

The agreement between the latter model and the ob-
served radial distribution may be judged from Table 1.
As a further illustration we have calculated o/r-curves
for this model and a turbostratic packing (see Biscoe &
Warren (1942) or Franklin (1951)) of graphite layers,
with =145 A and an interlayer distance of 3-40 A.



